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Abstract

The Highway Capacity Manual (HCM) capacity analysis for signals was converted from a volume
to capacity (v/c) to a delay-based method starting with the 1985 HCM.  Several structural changes
(with significant impact) have been made, resulting in the methods employed in the 1985 and
subsequent updates in 1994, 1997, and 2000.  However, the basic structure of the method remains
unchanged.  The delay computation procedure, founded on the Webster delay model which was
developed in the 1960’s, has stood the test of time as a fundamental method of traffic signal
analysis.

The formula for delay (and queues) in the first term of the Webster delay equation is founded on the
assumed shape of the queue accumulation diagram being a triangle, with the uniform delay (first
term) equivalent to the area of that triangle.  As such, all elements of the 1985-2000 delay methods
must conform to this fundamental assumption.  For many basic cases, this is not a problem.
However, there exist many common cases that have been unnaturally altered in order to meet this
basic triangular requirement.  These problematic cases create an overly-complex, inflexible and
often inaccurate approximate solution to signal analysis problems that are solved frequently using
the HCM methods.  These inadequate methods result in a lack of confidence in the models, and
ultimately lead some HCM users to search for alternate means to evaluate such problems.

The authors have developed an alternate calculation method for the HCM first-term delay model,
which produces the same results when the same, limiting assumptions are made, but a method that
does not require most of these limiting assumptions.  The paper proposes that the same fundamental
relationship between delay and the queue accumulation diagram can be evaluated in a different
manner (the Incremental Queue Accumulation method, or IQA), which releases the HCM capacity
analysis from many of these limiting assumptions while still being faithful to the Webster model
intent.  The result is a proposed HCM delay calculation method that is easier to understand and
which will deliver more accurate results over a broader range of conditions.



2

Background

The 2000 Highway Capacity Manual (HCM) [1] capacity analysis method for signals is the most
recent edition since the procedure was converted from a v/c-based to a delay-based method in the
1985 HCM [2], and has retained basically the same fundamental delay model since.  The delay
computation procedure, founded on the Webster delay model [3] developed in 1958, which has
stood the test of time as a fundamental method for traffic signal analysis.

The delay model is comprised of two elements:

1. “The First Term” (d1):  Produces the average delay per vehicle in the average cycle,
assuming that traffic arrivals and departures are completely uniform, both within each signal
cycle and across all cycles during the analysis period.

2. “The Second Term” (d2):  Produces the incremental delay due to randomness in arrivals from
cycle to cycle.  The incremental delay assumes steady state conditions.

Several structural changes (with significant impact) have been made that resulted in the methods
employed by the 1985 and subsequent updates of the HCM (1994, 1997, and 2000) [1-2, 4-5], but
the basic structure of the method has remained unchanged.  These changes included:

1. Replacement of Webster’s original incremental delay term with a time-dependent form
based on the coordinate transformation method by Kimber and Hollis [6].  This form
accounts for both random and over-saturation delays during a finite analysis period of
duration (T).

2. Treatment of the effects of the arrival characteristics of vehicles within a signal cycle due to
progression, resulting mainly from the work of Fambro, Chang and Messer [7].

3. More rational treatment of the effects of protected-permitted phasing on the departure
characteristics of vehicles within a signal cycle.

4. Treatment of oversaturated conditions in which the demand exceeds the capacity over an
entire analysis period and the effects of initial queues, mainly from the work of Fambro and
Rouphail [8].

The essential formula for delay (and queues) in the first term of the Webster delay equation is
founded on the assumed shape of the queue accumulation diagram being a triangle (see Figure 1),
resulting in the formula for the uniform delay (first term) being the area of that triangle.  As such,
all elements of the 1985-2000 delay methods must conform to this fundamental assumption.  For
many basic cases, this is not a problem, and the model has stood up well to the test of time.
However, there exist many common cases that have been significantly twisted in order to meet this
basic triangular requirement.

The HCM delay model limitations addressed in this paper lie in the “first term” (d1) of the delay
equation.  Therefore, the balance of this paper will focus on the first or “uniform” term.
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Problem Statement

Many aspects of the HCM signal delay method are impacted by the necessary assumption that the
uniform delay portion (d1) of the Webster delay formula must take the form of a triangle in the
associated queue accumulation diagram.  This basic assumption requires that:

1. There can be only one green and one red period during the cycle so that there is a single
triangle to be evaluated for the uniform delay.

2. During the red period, there is a single straight line on the leading edge of the queue
accumulation triangle that represents a uniform arrival rate during the red period.

3. During the green period, there is a single straight line on the falling edge of the queue
accumulation triangle that represents the difference between the uniform arrival rate
(above) and a uniform saturation flow rate of departure.

Below is a partial list of the sub-models within the signal delay method that must be unnaturally
altered to accommodate the assumption above:

1. Permitted Left Turn Model:  Must utilize a single, weighted-average saturation flow rate
during the entire green period, which is unrealistic and doesn’t properly model where the
departures occur in the cycle (including sneakers).

2. Protected-Permitted Left Turn Model: Special cases have been developed to circumvent
the problems caused by the need for the above assumption.  These cases cover some (but
not all) protected-permitted and permitted-protected situations (compound left turn
phases) with complicated formulas to estimate the uniform delay (Exhibits 16-23 and
E16-1 in HCM 2000).

3. Sneakers: The HCM method imposes a minimum saturation flow rate across entire
green period, which is an unrealistic representation of when sneakers discharge.

4. Progression Effect: The effect of progression is accounted for after the delay is
calculated assuming uniform arrivals, using an approximate method based on a crude
Arrival Type determination.

5. Multiple Green Displays: Such displays are not uncommon in the field, but cannot be
even approximated with the current method.  Two examples are a) right turn overlap
phases that are separated from the main green phase for the right turn by red phases
before and after the overlap phase, and b) compound left turn phases which include
significant separation by an all-red phase and/or an intervening red phase.

6. Protected-Permitted Right Turn Model: Similar problems as with compound left turns
regarding two periods of different saturation flow rates during green, which must be
represented by a single, constant saturation flow rate.

7. Start and end lost times: Lumped together and assumed to occur at the start of the green
period to simplify the computations, particularly in regard to the need to reference the g*
values to account for more complex left turn phasing situations (Exhibits 10-11 and
C16-4 thru C16-8 in HCM 2000).

8. All-red Model: All-red time is assumed to behave the same as and is included in the
yellow time due to the previous start/end lost time assumption for computational
simplification.  However, this causes problems regarding the definition of adjacent
phases and multiple green periods in regard to the g* figures.
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In summary, the basic model for d1 is appropriate for simple cases, but fails to address many
common situations that defy a simple triangular, formula-based approach, thus subverting the HCM
objective to provide the most realistic delay estimation method upon which the HCM LOS is based.

An Alternative Approach: The IQA Method

The prescribed way to calculate the first term of the Webster model in the HCM is to calculate the
area of its triangle, divided by the number of arrivals per cycle using the formula:

d1=0.5C (1-g/C) 2/ (1-Min (1, X) g/C) Eq. 1

An alternative way to accomplish the same result would be the following.  If one assessed the signal
operation incrementally every ∆ seconds and recorded how many vehicles have arrived (at the
assumed arrival rate during that interval) and how many vehicles have departed (based on the signal
display, the presence of un-served vehicles, and the assumed departure flow rate at that time) during
that same interval”, one can estimate the net increase or decrease in the queue accumulation during
∆.  By accumulating the net increase/decrease every ∆, assuming uniform arrival and departure
rates, and by plotting a graph of this accumulation, one would obtain the same triangle that is
evaluated by Webster’s first term.  Further, if one counted the total number of vehicles in queue in
each ∆ interval in this diagram over the course of the entire cycle, and divide it by the number of
arrivals, the result will be exactly the same as Eq.1.  If the flow rates are such that an integer
number of vehicles do not both arrive and depart during the ∆ increment, then ‘partial’ vehicles will
be in queue each ∆ but (if we tolerate this more abstract view) the result will be still exactly the
same.  Finally, the ∆ increment boundary must coincide exactly with those times where the signal
and/or and vehicle flows change.  However, if one is willing to reduce the size of the ∆ increment to
a fraction of a second, the same results as Eq.1 will be obtained.  Such an equivalent method of
calculating delay is called here the ‘Incremental Queue Accumulation’ (IQA) method, in many
ways, similar to Robertson’s simulation method in TRANSYT.

Numerical Illustrations of the IQA Method

A series of examples illustrate the points made above.  Example 1 describes the case for a simple
movement controlled by a single green/red cycle.  Example 2 depicts a permitted left turn that uses
a weighted-average saturation flow rate during the green, consistent with the HCM method.
Example 3 described a compound left turn phase.  These examples are intended to illustrate that
exactly the same results are achieved regardless of whether Eq.1 or the IQA method are used.  In
these examples, conditions have been selected very carefully in order that whole vehicles arrive and
depart during the ∆-increment so that the example is easy to visualize, but this is not a requirement
for the IQA method.  In a white paper [9] presented to the Signals Subcommittee of the TRB
Capacity Committee (AHB40) in January 2005 on this subject, SIGNAL2000/TEAPAC input data
files and output text files were prepared for these examples, which confirm the HCM calculation
portion of the Examples.  These outputs are not included here due to space constraints.

In all tables for the numerical examples, the following explanation applies.  The ∆# column
represents the ∆-increment number starting with the beginning of red display for the subject
movement.  The time column indicates the time from the start of red for which the increment
applies.  The #In column is the number of vehicles approaching the intersection (i.e. to be served)
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during the time increment, and the #Out column is the number of vehicles that depart the
intersection (stop bar) during the time increment.  The IQA column is the accumulated number of
vehicles waiting to be served, up to and including the time increment.  IQA is the sum of the #In
minus the #Out since the start of red.  The MBQ column is the location of the last vehicle queued
during the time increment measured in number of vehicle lengths from the stop bar.  The IQA×∆
column is the IQA value times the length of the time increment for the current time increment, and
represents the partial delay (vehicle-seconds) incurred by vehicles during the time increment.  The
totals at the bottom of the table represent, respectively, the total number of vehicles arriving and
departing the approach, the sum of all the incremental IQA values, the largest MBQ, and the sum of
the partial delays -- the total vehicle-seconds of delay in the cycle.  The total vehicle-seconds of
delay is also numerically equal to the total IQA multiplied by the time increment, and, when divided
by the number of vehicles entering or leaving is the average uniform delay in seconds/vehicle.

Similarly, in all the triangular queue accumulation figures for the examples, the following notation
applies.  Each vertical column represents a time increment.  Below each column are the signal
display status (‘r’ for effective red and ‘g’ for effective green), the time increment number and the
IQA for that time increment.  Each ‘X’ in the diagram represents a single vehicle in the queue, as
well as its position in the queue in relation to the stop bar (the vertical distance from the bottom of
the diagram to the X).  The IQA value at the bottom is the number of X’s in that column, and each
X is assumed to incur an amount of incremental delay equal to the time increment of the diagram.
The total number of X’s in the diagram multiplied by the time increment is the total delay of the
diagram.

Example 1 - Simple Movement Controlled by a Single Red/Green During the Cycle

Given Conditions
∆-increment = 2 sec
V = 1800 vph, or 1800/3600 x 2 = 1 veh/increment
s = 3600 vph, or 3600/3600 x 2 = 2 veh/increment
C = 60 sec
g = 40 sec

Computed Results
c = sg/C = 2400 vph
X = V/c = 0.75
d1 = 0.5C (1-g/C)2/ (1-Min (1,X) × g/C) = 6.67 sec/veh
MBQ = (maximum back of queue or Q1) = 20.0 using Eq. G16-7 in HCM2000

The results are summarized in Table 1 and Figure 1 below.  From Table 1, the first term delay is
easily computed as: d1 = 200/30 = 6.67 sec/veh., which is identical to the analytical value of d1

above.

Example 2 - Permitted Left-Turn with Weighted-Average Saturation Flow Rate in Green

Given Conditions
∆-increment = 12 sec
V = 300 vph, or 300/3600 x 12 = 1 veh/increment
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Vo (opposing flow rate) = 564 vph
s = 600 vph, or 600/3600 x 12 = 2 veh/increment
C = 120 sec
g = 60 sec

Computed Results
c = sg/C = 300 vph
X = V/c = 1.00
d1 = 0.5 C (1-g/C)2/(1-Xg/C) = 30.0 sec/veh

From Table 2, the first term delay is easily computed as: d1 = 300/10 = 30.0 sec/veh, which is
identical to the analytical computation of d1  above.

Table 1.  The IQA Method Applied to Example 1

∆# time (sec) #In #Out IQA MBQ IQAx∆ (delay during ∆)
1 0-2 1 0 1 1 2 effective red phase starts
2 2-4 1 0 2 2 4
3 4-6 1 0 3 3 6
4 6-8 1 0 4 4 8
5 8-10 1 0 5 5 10
6 10-12 1 0 6 6 12
7 12-14 1 0 7 7 14
8 14-16 1 0 8 8 16
9 16-18 1 0 9 9 18
10 18-20 1 0 10 10 20
11 20-22 1 2 9 11 18 effective green phase starts
12 22-24 1 2 8 12 16
13 24-26 1 2 7 13 14
14 26-28 1 2 6 14 12
15 28-30 1 2 5 15 10
16 30-32 1 2 4 16 8
17 32-34 1 2 3 17 6
18 34-36 1 2 2 18 4
19 36-38 1 2 1 19 2
20 38-40 1 2 0 20 0
21 40-42 1 1 0 - 0
22 42-44 1 1 0 - 0
23 44-46 1 1 0 - 0
24 46-48 1 1 0 - 0
25 48-50 1 1 0 - 0
26 50-52 1 1 0 - 0
27 52-54 1 1 0 - 0
28 54-56 1 1 0 - 0
29 56-58 1 1 0 - 0
30 58-60 1 1 0 - 0

Total 30 30 100 20 200 veh-sec
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Figure 1.  Illustration of IQA Results for Example 1

Increment ∆ = 2 sec                 X
                                  X
each “X” is 1 vehicle           X X |
  delayed 2 sec               X X
                            X X X   |
100 X’s = 200 veh-sec     X X X
                        X X X X     |
                      X X X X
                    X X X X X       |
                  X X X X X
                X X X X X X         |
              X X X X X X
            X X X X X X X           |
          X X X X X X X
        X X X X X X X X             |
      X X X X X X X X
    X X X X X X X X X               |
  X X X X X X X X X
X X X X X X X X X X                 |

Display:
r r r r r r r r r r g g g g g g g g g g g g g g g g g g g g

Increment:        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

IQA:              1
1 2 3 4 5 6 7 8 9 0 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0

Table 2.  The IQA Method Applied to Example 2

∆# time (sec) #In #Out IQA MBQ IQAx∆ (delay during ∆)
1 0-12 1 0 1 1 12 effective red phase starts
2 12-24 1 0 2 2 24
3 24-36 1 0 3 3 36
4 36-48 1 0 4 4 48
5 48-60 1 0 5 5 60
6 60-72 1 2 4 6 48 effective perm. green phase starts
7 72-84 1 2 3 7 36
8 84-96 1 2 2 8 24
9 96-108 1 2 1 9 12
10 108-120 1 2 0 10 0

Total 10 10 25 10 300 veh-sec
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Figure 2.  Illustration of IQA Results for Example 2

                X           Increment ∆ = 12 sec
              X
            X X |           each “X” is 1 vehicle
          X X                 delayed 12 sec
        X X X   |
      X X X                 25 X’s = 300 veh-sec
    X X X X     |
  X X X X
X X X X X       |

Display:
r r r r r g g g g g

Increment:        1
1 2 3 4 5 6 7 8 9 0

IQA:
1 2 3 4 5 4 3 2 1 0

Example 3 – A Protected-Permitted Left-Turn Movement

Given Conditions
∆-increment = 4 sec
V = 1800 vph (2 lanes), or 1800/3600 x 4 = 2 veh/increment
Vo (opposing flow rate) = 40 vph (2 lanes)
sprot = 3600 vph, or 3600/3600 x 4 = 4 veh/increment
sperm = 2700 vph, or 2700/3600 x 4 = 3 veh/increment
C = 60 sec
gprot = 16 sec
gperm = 20 sec

Computed Results
d1 from HCM procedures = 10.2 sec/veh

From Table 3, the first term delay is easily computed as d1 = 304/30 = 10.1 sec/veh.  This value is
virtually identical to the computed value of d1 for the conditions that are approximated by the inputs
used for the equivalent IQA analysis.
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Table 3.  The IQA Method Applied to Example 3

∆# time (sec) #In #Out IQA MBQ IQAx∆ (delay during ∆)
1 0-4 2 0 2 2 8 effective red phase starts
2 4-8 2 0 4 4 16
3 8-12 2 0 6 6 24
4 12-16 2 0 8 8 32
5 16-20 2 0 10 10 40
6 20-24 2 0 12 12 48
7 24-28 2 4 10 14 40 effective prot. green phase starts
8 28-32 2 4 8 16 32
9 32-36 2 4 6 18 24
10 36-40 2 4 4 20 16
11 40-44 2 3 3 22 12 effective perm. green phase starts
12 44-48 2 3 2 24 8
13 48-52 2 3 1 26 4
14 52-56 2 3 0 28 0
15 56-60 2 2 0 - 0

Total 30 30 76 28 304 veh-sec

Enhancements and Extensions Allowed by the IQA Method

The proposed IQA method removes virtually all of the limitations mentioned in the opening section
of this paper, without creating any new limitations to speak of.  This means that the proposed IQA
method extends the usability of the HCM to better reflect conditions commonly found in the field
without the plethora of limiting assumptions imposed by the current 2000 HCM method.

Example 4 below illustrates the point above, by altering the compound LT problem of Example 3 to
a more realistic condition, including separated start and end lost times, inclusion of an all-red
interval, etc.  Example 5 illustrates how the method can be applied to a case with multiple greens
conditions, as frequently encountered with a RT overlap.  Neither of these problems can be
analyzed effectively with the current HCM methods.

Example 4 - More Realistic Protected-Permitted LT Analysis Using IQA Method

Given Conditions
∆-increment = 2 sec
V = 600 vph, or 600/3600 x 2 = 1/3 veh/increment
sprot = 1800 vph, or 1800/3600 x 2 = 1 veh/increment
sperm = 600 vph, or 600/3600 x 2 = 1/3 veh/increment
C = 60 sec
G+Yprot = 24 sec, l1 = 2 sec, l2 = 2 sec, gprot = 20 sec
G+Yperm = 18 sec, l1 = 2 sec, l2 = 2 sec, gperm = 14 sec

The corresponding Phasing Diagram for the subject LT (shown in heavy bold) is depicted at the
bottom of Figure 4 below.  From Table 4, d1 is computed as d1 = 126/10 = 12.6 sec/veh.
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Figure 3.  Illustration of IQA Results for Example 3

                        X        Increment ∆ = 4 sec

                      X |        each “X” is 1 vehicle
                      X            delayed 4 sec
                    X   |
                    X            76 X’s = 304 veh-sec
                  X X   |
                  X
                X X     |
                X X
              X X       |
              X X
            X X X       |
            X X X
          X X X         |
          X X X
        X X X X         |
        X X X X
      X X X X           |
      X X X X
    X X X X X           |
    X X X X X
  X X X X X             |
  X X X X X
X X X X X X             |
X X X X X X

Display:
r r r r r r g g g g g g g g g

Increment:        1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

IQA:    1 1 1
2 4 6 8 0 2 0 8 6 4 3 2 1 0 0
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Table 4.  The IQA Method Applied to Example 4

∆# time (sec) #In #Out IQA MBQ IQAx∆ (delay during ∆)
1 0-2 1/3 0 1/3 1/3 2/3 end lost time for protected phase (4)*
2 2-4 1/3 0 2/3 2/3 4/3 10” overlap phase for opposing LT (1)
3 4-6 1/3 0 3/3 3/3 6/3
4 6-8 1/3 0 4/3 4/3 8/3
5 8-10 1/3 0 5/3 5/3 10/3
6 10-12 1/3 0 6/3 6/3 12/3
7 12-14 1/3 0 7/3 7/3 14/3 start lost time for permitted phase (2)
8 14-16 1/3 0 8/3 8/3 16/3 10” gq for opposing queue to clear
9 16-18 1/3 0 9/3 9/3 18/3
10 18-20 1/3 0 10/3 10/3 20/3
11 20-22 1/3 0 11/3 11/3 22/3
12 22-24 1/3 0 12/3 12/3 24/3
13 24-26 1/3 1/3 12/3 13/3 24/3 4” gu at opposed saturation flow
14 26-28 1/3 1/3 12/3 14/3 24/3
15 28-30 1/3 2 7/3 15/3 14/3 2 sneakers during ending lost time (2)
16 30-32 1/3 0 8/3 16/3 16/3 effective red starts, g for cross street (3)
17 32-34 1/3 0 9/3 17/3 18/3
18 34-36 1/3 0 10/3 18/3 20/3
19 36-38 1/3 0 11/3 19/3 22/3
20 38-40 1/3 0 12/3 20/3 24/3 start lost time for protected phase (4)
21 40-42 1/3 1 10/3 21/3 20/3 20” gprot protected phase (4)
22 42-44 1/3 1 8/3 22/3 16/3
23 44-46 1/3 1 6/3 23/3 12/3
24 46-48 1/3 1 4/3 24/3 8/3
25 48-50 1/3 1 2/3 25/3 4/3
26 50-52 1/3 1 0 26/3 0
27 52-54 1/3 1/3 0 - 0
28 54-56 1/3 1/3 0 - 0
29 56-58 1/3 1/3 0 - 0
30 58-60 1/3 1/3 0 - 0

Total 10 10 63 26/3 126 veh-sec

*See Figure 4 for the notation of phase numbers ( )
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Figure 4.  Illustration of IQA Results for Example 4

Increment ∆ = 2 sec                             X
                                              X X
each “X” is 1/3 vehicle                     X X   |
  delayed 2 sec                           X X X
                                        X X X X   |
189 X’s = 126 veh-sec                 X X X X
                                    X X X X X     |
                                  X X X X X X
                                X X X X X X       |
                              X X X X X X X
                            X X X X X X X X       |
                          X X X X X X X X
                        X X X X X X X X X         |
                      X X X X X X X X X X
                    X X X X X X X X X X           |
                  X X X X X X X X X X X
                X X X X X X X X X X X X           |
              X X X X X X X
            X X X X X X X X                       |
          X X X X X X X X X
        X X X X X X X X X X                       |
      X X X X X X X X X X X
    X X X X X X X X X X X X                       |
  X X X X X X X X X X X X
X X X X X X X X X X X X                           |

Increment:        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

IQA (in 1/3 veh): 1 1 1 1 1       1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 2 2 7 8 9 0 1 2 0 8 6 4 2 0 0 0 0 0

Display:
l o o o o o l q q q q q u u s r r r r l g g g g g g g g g g

l = start or end lost time
o = overlap for opposing LT (red for subject LT, could be all-red)
q + u constitute the effective green for the subject LT permitted phase, where
q = portion of permitted green blocked by opposing queue
u = portion of permitted green unblocked by opposing queue
s = sneakers departing during ending lost time
r = red time during green phase for cross street
g = protected effective green time

      Φ1          Φ2 Φ3 Φ4
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Example 5 – Multiple Green and Red Times for Right Turn Movement in Single Cycle

Given Conditions
∆-increment = 2 sec
V = 600 vph, or 600/3600 x 2 = 1/3 veh/increment
s = 1800 vph, or 1800/3600 x 2 = 1 veh/increment
C = 60 sec

From Table 5, d1 = 82/10 = 8.2 sec/veh.

Table 5.  The IQA Method Applied to Example 5

∆# time (sec) #In #Out IQA MBQ IQAx∆ (delay during ∆)
1 0-2 1/3 0 1/3 1/3 2/3 end lost time of 2nd green phase (4)*
2 2-4 1/3 0 2/3 2/3 4/3 1st red, green cross street phase (1)
3 4-6 1/3 0 3/3 3/3 6/3
4 6-8 1/3 0 4/3 4/3 8/3
5 8-10 1/3 0 5/3 5/3 10/3
6 10-12 1/3 0 6/3 6/3 12/3
7 12-14 1/3 0 7/3 7/3 14/3
8 14-16 1/3 0 8/3 8/3 16/3
9 16-18 1/3 0 9/3 9/3 18/3
10 18-20 1/3 0 10/3 10/3 20/3 start lost time of 1st green phase (2)
11 20-22 1/3 1 8/3 11/3 16/3 12”, 1st green phase (2)
12 22-24 1/3 1 6/3 12/3 12/3
13 24-26 1/3 1 4/3 13/3 8/3
14 26-28 1/3 1 2/3 14/3 4/3
15 28-30 1/3 1 0 15/3 0
16 30-32 1/3 1/3 0 16/3 0
17 32-34 1/3 0 1/3 1/3 2/3 end lost time of 1st green phase (2)
18 34-36 1/3 0 2/3 2/3 4/3 2nd red, opposing approach phase (3)
19 36-38 1/3 0 3/3 3/3 6/3
20 38-40 1/3 0 4/3 4/3 8/3
21 40-42 1/3 0 5/3 5/3 10/3
22 42-44 1/3 0 6/3 6/3 12/3
23 44-46 1/3 0 7/3 7/3 14/3
24 46-48 1/3 0 8/3 8/3 16/3 start lost time, 2nd green phase (4)
25 48-50 1/3 1 6/3 9/3 12/3 12”, 2nd green phase (4)
26 50-52 1/3 1 4/3 10/3 8/3
27 52-54 1/3 1 2/3 11/3 4/3
28 54-56 1/3 1 0 12/3 0
29 56-58 1/3 1/3 0 - 0
30 58-60 1/3 1/3 0 - 0

Total 10 10 41 16/3 82 veh-sec

*See Figure 5 for the notation of phase numbers ( )
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Figure 5.  Illustration of IQA Results for Example 5

Increment ∆ = 2 sec                                 X
                                                  X X
each “X” is 1/3 vehicle                         X X
  delayed 2 sec                               X X X |
                                            X X X X
123 X’s = 82 veh-sec                      X X X X   |
                                        X X X X X
                                      X X X X X X   |
                                    X X X X X X
                                  X X X X X X X     |
                                X X X X X X X X
                                                    |

                          X                         |
                        X X
                      X X                           |
                    X X X
                  X X X X                           |
                X X X X
              X X X X X                             |
            X X X X X X
          X X X X X X                               |
        X X X X X X X
      X X X X X X X X                               |
    X X X X X X X X
  X X X X X X X X X                                 |
X X X X X X X X X X

Increment:        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

IQA (in 1/3 veh): 1
1 2 3 4 5 6 7 8 9 0 8 6 4 2 0 0 1 2 3 4 5 6 7 8 6 4 2 0 0 0

Display:
l r r r r r r r r l g g g g g g l r r r r r r l g g g g g g

l = start or end lost time
r = effective red time
g = effective green time

Space limitations prevent detailing another good example: a permitted left turn with 80 vph during a
65” green (90” cycle) and an opposing volume at capacity such that all the left turns are made as

      Φ1 Φ2 Φ3 Φ4



15

sneakers at the end of the green.  The HCM distributes the left turn departures uniformly over the
green with a delay of 12 sec/veh, while the IQA method recognizes the queue buildup over the
whole cycle resulting in a delay of 45 sec/veh, an error of over 300 percent.

Application of a Variable Increment Length in IQA

The IQA method as described thus far uses a uniform ∆-increment for simplicity and clarity.  A
logical extension of the method would be to recognize that this increment need not be constant
throughout the cycle, but rather a single (and different) time increment can be used for each period
of the cycle during which both the inflow and outflow do not change.  To accomplish this, one
needs only to identify the points in the cycle where in or out flow values change (signal display,
queue dissipation, etc.).  During each of these periods, we merely need to compute the total IQA
and this can be done with simple formulas using the area of the trapezoids formed by the starting
and ending queue of the period and the inflow and outflow rates of the period.  In effect, this
clarifies that the proposed IQA method is the same as the original Webster method, by simply
replacing the single triangle of Webster (forced upon us by Webster’s underlying assumptions) with
multiple trapezoids for each period of the cycle where flows (in and out) are constant.  The Webster
formula is simply a degenerate case of the more generalized IQA method.

An example application of this trapezoidal approach to the IQA method is illustrated for Example 4,
reworked below as Example 4(R) (for Revised) using just 5 time intervals (or 5 trapezoids) during
which constant inflow and outflow rates prevail.  The trapezoids are overlaid onto the IQA diagram
used previously in Figure 6.  The starting and ending queues for each time interval (trapezoid) are
determined using the same IQA method previously described.  Table 6 illustrates the simple
calculations needed to produce the same result as in the constant-increment method illustrated
earlier.  In this example, q1 and q2 represent the queue lengths at the start and end of a (variable)
interval (∆), such that:

q2 = q1+ (V-S) × ∆ Eq. 2

where V and S are the arrival and departure flow rates in ∆ (in veh/sec), respectively, and the partial
delay accrued in each interval of size ∆ is calculated as:

di = ∆ × (q1+q2)/ 2 Eq. 3

Table 6.  Trapezoidal Calculations Using IQA Method Applied to Example 4(R)

Interval # ∆(sec)  V*  S* q1 q2   di Cycle condition covered
1 24  1/6  0 0 4   48 red & opp. queue clear. in perm. phase
2   4  1/6 1/6 4 4   16 perm. LT phase after opp. queue clear.
3   2  1/6  1 4 7/3 19/3 sneakers at end of perm. LT phase
4 10  1/6  0 7/3 4 95/3 red for other street phase
5 12  1/6 1/2 4 0   24 prot. phase - queue clearing
6   8 1/6 1/6 0 0 0 prot. phase - queue cleared

Total  60 1/6*60=10 126 veh-sec (d1=126/10 = 12.6 sec/veh)

*See Example 4 for time-dependent inflow and outflow rates.
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Figure 6.  Trapezoidal Calculations for Example 4 (R)

Increment �= 2 sec                              X |
                                              X X
each “X” is 1/3 vehicle                     X X   |
  delayed 2 sec                           X X X
                                        X X X X   |
189 X’s = 126 veh-sec                 X X X X
                                    X X X X X     |
                                  X X X X X X
                                X X X X X X       |
                              X X X X X X X
                            X X X X X X X X       |
                          X X X X X X X X
                        X X X X X X X X X         |
                      X X X X X X X X X X
                    X X X X X X X X X X           |
                  X X X X X X X X X X X
                X X X X X X X X X X X X           |
              X X X X X X X
            X X X X X X X X                       |
          X X X X X X X X X
        X X X X X X X X X X                       |
      X X X X X X X X X X X
    X X X X X X X X X X X X                       |
  X X X X X X X X X X X X
X X X X X X X X X X X X                           |

Increment:        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

IQA (in 1/3 veh): 1 1 1 1 1       1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 2 2 7 8 9 0 1 2 0 8 6 4 2 0 0 0 0 0

Display:
l o o o o o l q q q q q u u s r r r r l g g g g g g g g g g

Discussion and Extensions of the IQA Method

The most important observation regarding the examples above is that given the same limiting
assumptions that currently exist in the 2000 HCM, the IQA method will produce exactly the same
results (Examples 1, 2 and 3).  This point is meant to illustrate that the proposed change is not to the
underlying method of the HCM, but rather in the way we evaluate the HCM equation using a
method that is not so limiting.  While the proposed IQA method is completely consistent with the
traditional models (Webster, HCM) when applied with the same assumptions, it is not limited to
conditions that match these assumptions (Examples 4 and 5).
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Since the 2000 HCM queue model was also developed as a “two-term” model for consistency with
the delay model, it is presumed that the IQA method could also be used in exactly the same fashion
as an alternate method to calculate the first term of the 2000 HCM queue model.  In addition, Eq. 1
captures only the under-saturated portion of the delay (the X<=1.0 condition).  Random and over-
saturated delays are automatically captured in the second delay term.  Thus, the proposed IQA
method will be applicable to over-saturated conditions in the same way the current method is.  This
will be accomplished by first calculating the capacity of all of the effective green displays.  If the
arrival volume exceeds the total capacity, the volume must be reduced by the inverse of the X value
for purposes of estimating delay in  the IQA process (similar to Eq.1).

In conjunction with the development of detailed implementation procedures for the IQA method,
the authors feel the Capacity Committee should seize the opportunity to also provide the
computational mechanism within the HCM procedures to handle lane-by-lane analyses since both
changes will require substantial structural changes to the HCM.  If lane volume data are
unavailable, the method could provide default lane data consistent with the utilization factors of the
current lane-group-based method.  A superior solution would be to implement the technique
proposed in recent research by Nevers and Rouphail [10] for lane volume assignments based on
estimated queue lengths, which appear to match field data quite well.

Another desirable extension of this method would be to generate standardized Arrival Type-specific
patterns for so that the use of a progression factor can be eliminated and the effect of progression
can be evaluated in a more robust way using a variable arrival rate instead of an ‘after-the-fact’
adjustment to the triangle calculation.  Some excellent work has already been accomplished in this
area by Benekohal [11].  In order for such an adjustment to be effective, an assumed arrival pattern
must be provided for all arrival types.  At a minimum, the method should produce an arrival pattern
when a user selects an arrival type.  This topic is considered separately in a companion paper
submitted to TRB by the authors [12].

Finally, it is important to validate the proposed model under conditions which both match the
assumptions of the 2000 HCM, as well as those which go beyond those of the 2000 HCM, against
field conditions.  Such work has really not been carried out at the national level since the 1985
HCM.  The assumption here is that where field conditions are reasonably consistent with the 2000
HCM assumptions, all methods will yield comparable results.  However, under conditions which
exceed the 2000 HCM assumed conditions, as in Examples 4 and 5 above, it is assumed that the
proposed IQA method will better replicate field conditions than the 2000 HCM.

Conclusions and Recommendations for Future Research

In summary, the authors offer the following conclusions:

1. Under the same set of simplifying assumptions, the proposed IQA method delivers exactly the
same delay results as the HCM2000 method.

2. The limiting assumptions of the HCM2000 method are not binding in the IQA method, thus
making it more flexible and more consistent with observable field phenomena.
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3. Oversaturated conditions can be handled the same way as the HCM2000 since the IQA method
only considers the first-term component of delay, which inherently calculates delay up to and at
capacity.  Random and over-saturation delays are captured in the incremental delay term.

4. On the surface, the IQA method may appear more complex than the HCM method, but in reality
it is actually less so and far easier to comprehend, just more tedious if being performed without
the use of computer-aided tools.  The IQA method can be completely described using the
worksheet approach of the HCM.

5. The IQA method is more consistent with the more complex models which are often needed to
supplement the HCM methods, thus making the HCM methods more generally applicable.

In terms of future research, the highest priorities would be (a) to conduct validation studies against
field conditions, (b) to verify that a solution with varying arrival flow rates during red and green is
comparable to, or better than, the progression factor approach used in the HCM2000, and (c) to
illustrate how the IQA method can be accomplished using a lane-by-lane approach in the signals
chapter of HCM2000.  The IQA method should also be validated against the HCM2000 queue
estimation method as a viable replacement for the Q1 term calculations.  Following this, a concerted
effort to update the method and worksheets described in the HCM2000 to accommodate the IQA
method (on a lane-by-lane basis, if the Capacity Committee wishes) should be undertaken with the
ultimate objective of producing a revised signalized intersection chapter for the HCM.
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